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THREE-DIMENSIONAL ELASTIC CRACK TIP
INTERACTIONS WITH TRANSFORMATION STRAINS

AND DISLOCATIONS

JAMES R. RICE
Division of Applied Sciences, Harvard University. Cambridge. MA 02138, U.S.A.

Abstract-Three·dimensional elastic interactions between a half·plane crack and sources of
internal stress such as transformation strains and dislocations are analyzed. These interactions
include the stress intensity factors induced along the crack front by the source and the overall
energy change and stress field induced in the source region owing to the presence of the crack.
The analysis is based on the author's recent extension of "weight function" methods of three
dimensional crack analysis! I) and principal results of that extension are summarized at the
oUlset here.

INTRODUCTION

In this study, recent developments[ I] in three-dimensional elastic crack analysis are
applied to deriving the interaction between a source of internal stress and a crack tip,
The source is represented as some region that is given an Eshelby transformation of
its stress-free state. This representation includes, as a limiting case, an arbitrary dis
location on a planar cut. As particular cases for which the mathematics is relatively
tractable, explicit results are given for the tensile stress intensity factor due to arbitrary
dilatant transformations in an isotropic material, and for the intensity factor and stress
field associated with an opening dislocation (e.g. a prismatic dislocation loop) on a cut
that is coplanar with the crack.

Understanding the interaction between an arbitrary source and the crack referred
to above involves calculating the stress intensity factors induced along the crack tip
by the source, and also calculating the energy and image like contributions to stresses
or energetic forces (Le. configurational forces) exerted on the source owing to the
presence of the crack. The recent developments[ I] which facilitate such calculations
are the analysis of first-order variations in three-dimensional elastic fields associated
with variations in location of the tip of a planar crack and the use of such analyses to
extend and apply "weight function"l2, 3, 4] concepts for crack analysis in the three
dimensional regime,

The present work is dedicated to the memory of Alicia Golebiewska Herrmann.
whose interests included the theory of dislocations, cracks, and other defects in solids
and of the energetic forces which act upon them.

THREE-DIMENSIONAL WEIGHT FUNCTIONS FOR CRACKS

Consider a half-plane crack in an infinite elastic body. The crack lies on the plane
y = 0 and its tip is parallel to the z axis along x = a such that the region x < a is
cracked. As is well known, in such circumstances arbitrary loadings induce a singularity
at the crack tip such that stress components au (i, j = x, y, z) ahead of the tip on y
= 0 vary like

(I)

as x-a. The K's are stress intensity factors and may vary with position z along the
crack front. They appear also in the expression

(2)
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(Greek indices have range I, 2. 3 and the summation convention is followed with
repeated indices) for the Irwin energy release per unit area of crack advance. The
coefficients Aaf;l are symmetric. Af;la = Aaf;l' and for an isotropic material AUf;l is diagonal
with

(3)

(fl. = shear modulus, v = Poisson ratio). Following Stroh[5] and Barnett and Asarol6l.
for anisotropic solids Aaf;l can be expressed as a numerical factor times the inverse of
a matrix appearing (pre- and post-multiplied by Burgers vector) in the pre-logarithmic
energy factor for a straight dislocation line lying parallel to the direction of the crack
tip. The displacement discontinuity across the crack surfaces very near the crack tip
may be expressed in terms of the K's and A's by

(4)

where tJ.lii = Uj(x. 0+, z) - Uj(x, 0-. z). Thus the terms Aaf;lKf;l. 0. = 1, 2, 3, may be
regarded as displacement intensity factors.

In [I]. three vector functions ha = ha(r, z'. a) of position r (= (x. y. z» in the body
were introduced. Here 0. = I. 2. 3~ These functions are also associated with a location
z = z' along the crack front and they depend. of course, also on a, which measures
the position of the crack front. The functions are called "weight functions" and they
are universal for a given geometry ofcracked body in the sense of having no dependence
on the particular distribution of loading forces to which the body is subjected. For the
half-plane crack in an infinite homogeneous body. translational invariance requires that
the hc.,,(r. z', a) be dependent only on x-a. y. and z - z'.

The weight functions have the following two properties: The stress intensity factors
induced at the location z = z' along the crack tip by an arbitrary distribution of body
force [ = [(!:.) per unit volume are given by

(5)

where dVCr) denotes an element of volume and the integral extends over all loaded
elements. Also. if the crack tip is moved from x = a to the neighboring position x =
a + 8a(z), where 8a(z) is an arbitrary function of position z along the tip, while the
body is subject to some system of loadings inducing stress intensity factors Kf;l(Z) along
the initial straight crack tip. the associated variation in displacement field!:!. = !:!.(!:.) is

(6)

to first order in 8a(z'). Thus the displacement intensity factors Aaf;lKf;l times 8a are the
source terms. weighted with the ha • to form 8u. Later it will be seen why the second
property necessarily follows from the first; see[l] also.

The functions ha are expressed in [I] for isotropic homogeneous materials with
half-plane cracks in terms of certain rather formidable double integrals. An explicit
solution was also developed for h. (denoted as h in the relevant part of [1]) by con
sidering a crack under arbitrary tensile (mode IfJoading, and by directly formulating
and solving the three-dimensional elasticity problem for the first order variation 8u(r)
associated with arbitrary 8a(z). Probably a similar approach based, e.g., on the rep
resentation of shear mode solutions for the half-plane crack as given by Meade and
Keer[7], will prove a convenient route to explicit forms for 11 2 and 11 3 • The results for
the x, y, z components of !!.. are - -
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hi.\" = -[1/2(1 - v)]a(L + yH)/ax

h ly = H - [1/2(1 - v)]yaH/ay

hi: = - [1/2(1 - v)]il(L + yH)/az.

where Hand L are harmonic in x. y. z and given by

, (I/21T3) 1/2 Im[(x - a + ;y)1/2]
H(x - a. y. Z - Z ) = ( )2 2 ( ')2'x-a +y + z-z

with branch cut on the crack surface and

783

(7)

(8)

L(x - a, y, Z - z') = - (1 - 2v) LX H(x - a. y. Z - z') dY. (9)

It may be noted also, as required for subsequent applications. that

h,,-.,- == ah"./ay = [(1 - 2v)/2(1 - v)]aH/ay - [)/2(1 - v)]yiPH/ay2.. . .

hi i.'; == hi...., + h".. ,. + hi:.: = [(1 - 2v)/(1 - v)]aH/ay.. . .

(10)

Here Latin indices such as j (but excepting x. y. and z) range over the values x. Y. z
with summation on repeated indices; the comma denotes partial differentiation.

The following result was also derived in [I] for a planar crack with a slightly
nonstraight front in an isotropic homogeneous solid under general loadings that cause
mode 1 tension at the tip. For present purposes. let KY[z. a] denote the tensile stress
intensity which the given loadings induce at location z along the tip when the tip is
straight and is located at x = a. For example. KY[z'. a] is given by the right side of
eqn (5) with a = I. Then for the case when the tip deviates slightly from straightness.
lying along the curve x = b(z) in the plane y = O. one has

to first order in b(z') - b(z) for the mode 1 intensity at z; the integral is interpreted in
a principal value sense. This expression improves upon a result of Meade and Keer[7]
as discussed in [l].

Knowledge of the weight functions ha lets one express the displacement field every
where in the half-plane cracked body provided that the field is known when the given
loadings act but no crack is present. To see why. let 5a be uniform in z' in eqn (6) and
divide by &a. This gives

where eqn (5) for K 13 has been used. Suppose that the dyad GKeiv (! - Q. with com
ponents G1Jelv• is the Kelvin Green's function for the infinite uncracked body. or is the
generalization of Kelvin function for an infinite anisotropic uncracked body. Then.
when there is no crack present (i.e. when a = - x)

(13)

If we add to this the integral of au/aa from - x to O. we get the displacement field for
a body subjected to the given loadings and containing a half-plane crack on y = 0 with
tip along the z axis:
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(14)

If an isotropic solid is subjected to symmetric loadings f which induce only mode
I tension conditions along its tip, the volume integrals in eqns (12) and (14) vanish for
13 == 2 and 3. In such cases, eqn (14) reduces to

I - v IO f +x r+ -1.1.- -x -x !!.(!:., z', a) Jv !!J.(~, z', a)·f(D dV(D dz' da. (15)

When we read-in the components of hi from eqns (7), and move the integration op
eration on z' above inside the differential or integral operations on other variables in
eqns (7, 9), the integration on z' is found to be elementary in each case. For all com
ponents of h 1i(!:., z', a) !!Ij(~, z', a) we need the integral

f + x -=--__-::--_-::-- --::"d:-:-z_'__-;:-_-;:- -:-:;-:
-x [(x - a)2 + y2 + (z - z')2][(i - a)2 + y'! + (i - z'),!]

== 1T(l/p + I/P)/[(z - i)2 + (p + pf],

established by residue methods, where

(16)

(17)

The integral on a in eqn (15) is more formidable but is carried out subsequently for a
special application.

STRESS INTENSITlES DUE TO TRANSFORMATIONS AND DISLOCATIONS

Suppose that the cracked solid is given some distribution of transformation strain
!T = !T(~) throughout a region V. This is to be understood in the sense that

(18)

where C is the same modulus tensor as before transformation and has the usual sym
metries-:- By a well-known argument used, e.g. for analysis of transformation of an
inclusion by Eshelby and for stress analysis in presence of plastic strain by Lin, and
earlier by Duhamel for thermal stress analysis, the displacement field produced by the
eT distribution is the same as that produced in an identical body with ET = 0 subject
to a certain effective force field. That is, the equilibrium equations read

(19)

and on traction-free elements of boundary, such as crack surfaces in the present case,
having outer normal !!

(20)

Thus the displacement field induced by eT is the same as that induced by the effective
body force distribution -

(21)
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throughout the transformed region \I plus a Dirac singular layer of effective body force
along the crack surfaces equivalent to tractions

Inserting this effective force field into eqn (5) and applying the divergence theorem.
which results in cancellation of the integral of !In; 1'1'1" along the traction-free surfaces.
one sees that the distribution of transformation strain induces stress intensity factors

(23)

at location z' along the crack front. Here the differentiation in !lni.i(r. ~'. a) is with
respect to the ith component of r. i = x. y. or z. The expression for K.. is analogous
to that derived on the basis of tw-o-dimensional weight function theory by McMeeking
and Evans[8] for isotropic cracked solids with uniformly transformed cylindrical regions
with axis parallel to the tip of a plane-strain crack; the same two-dimensional problem
had been solved by direct elasticity calculations by Hutchinson[9. 10]. Equation (23)
reduces to those results when we consider the isotropic solid. make E

1 independent of
z, and integrate in z over - x to + x. -

Dislocations on some cut surface A can also be considered: let the sides of A be
denoted + and -, let N be the normal to A pointing from - to +. and ~ U = u( +)
- u( -) be the dislccation. Then to represent a dislocation ET is regarded as Dirac
singular on A, and zero outside A. such that if we integrate -E/'", over some volume
element &V that includes area M of A there results

f 1 IfE",,, dV = -2 (N",dU" + N"dum ) dA.
flV flA

Thus. the resulting stress intensity factor distribution along the crack tip is

(24)

(25)

The full expression for the displacement field induced by the transformation strain
is analogous to eqn (14) and its derivation again begins with eqn (6) which remains
valid in this case. Thus

() r GKelv(. -)C T (~) dV(-)up!:. = JV p".i ~ -!:. i""",Emll ~ !:.

Here the i in G~7Y is to be understood as differentiation on the ith component of E. In
the case of a dislocation. the expression is the same except that the integral over V
becomes one over A and E:'", dV is replaced by N"dum dA.

In applications to isotropic materials. it may be noted that

huj.iCijmn = jJ.(hum.1I + hUll.",) + [2vjJ.!(I - 2v)]&mllhuj.j .

Thus if we let the transformation strain correspond to pure dilation, E:'", =
then

c..a.c ')1.7_1

(27)

(28)
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The resulting mode I stress intensity factor is, using eqn (10),

" 2....(1 + v) f, aH(x - <1. y. :: - ;') /1\ (-) - . l:l (r \' -)uru\'u-
I" - 3( 1 - v) \' ay . , . ~.... . . .....

where H is given by eqn (8) and one may, therefore, calculate that

aH cos (4)/2111 - 8(p2/R2
) sin2 (4)/2)]

-=
ay (27T).II!R 2 pI/2

Here p is defined in eqn (7), tan 4> = y/(x - a), and

(30)

(3\)

If we consider the case in which aT is independent of z, then integration on :. and some
rearrangement of the result shows that

....0 + v) f l/' '/'K = p-' - cos (3A..r')1l (r ,.) dr u"• 3(1 - v)(27T)1/2 A" •• '1-'- . ' ... '
(2)

where A.,." is the cross-section of the transformed region in the x, y plane. This is in
agreement with the results of McMeeking and and Evans[8] and Budiansky et al.[ 10],
derived for analysis of "transformation toughening" at crack tips. Their two-dimen
sional treatments correspond to a smearing-out of the actual discrete transforming
particles in the z direction. which may be quite adequate for the purposes addressed.
The expressions (28) and (29) above allow the full three-dimensional effect of an in
dividual transforming particle to be calculated.

As another application for the isotropic material, suppose that an opening dislo
cation is present on the plane y = 0 ahead of the crack. By opening dislocation is
meant that only 6.11.,. = 6.u,(x, z) is non-zero on the cut. This is surely not the most
interesting crack and dislocation combination but, for it, only a mode I intensity factor
is induced and the analysis depends only on the presently known weight function ~I'

From eqns (25. 27) the intensity factor distribution is

and using eqn (10). this reduces to

K,( 7') - _ .... - J+x IX aH(x - a, 0.:. - ::') A •• d' d-- - I ~ II" (.\, ,) .\ ~
- V -x "ay .

The expression is always of one sign when 6.11.,. ;;: 0 and shows, for example, that the
opening of coplanar cracks ahead of a tensile-loaded straight-tipped main crack will
always increase K. along the main crack tip.

Note that all the expressions for K I in this section are for a crack with a straight
tip. They can be converted to the case of a crack with a slightly nonstraight tip by use
of eqn (II).

ENERGY. STRESSES. AND ENERGETIC FORCES

Let U denote the elastic strain energy of the cracked body subject to general loading
by a field fer) of body force and containing some distribution of transformation strain
~T(~). U is-defined by
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(35)

where the integral extends over all the body. From the definition of the energy release
rate G of eqn (2). it is evident that

(36)

for crack advance Sa in presence of fixed transformation strain. Also. a simple cal
culation based on eqns (35). (18). (19) and (20) shows that if we alter the distribution
of transformation strain at fixed crack position, then

BU = J. f·Bu· dV - J. O'··Be': dV.v ./ ./ V 1./ .I
(37)

Later we shall be concerned with singular eT corresponding to dislocations. The quan
tities G (= Aa [3Ka K[3) and O'ij can evidently be interpreted as energetic forces respec
tively conjugate to crack advance Ba and transformation Belj.

If we now define the potential energy

(38)

then one may write in general that

when any of f. crack position and eT are varied. If f and eT are held fixed, we can
integrate on a-and write - --

f u iJP
P = po + - da

-x iJa
(40)

for the potential energy when the crack tip lies parallel to the z axis at x = a. Here po
denotes the potential energy which f and eT cause in the uncracked body; po may be
formally unbounded especially if point forces, Volterra dislocations (Le. discontinuous
change of au to zero at edge of A), and the like are considered. However, iJPliJa is
bounded unless the crack plane happens to pass through a singularity such as a point
of force application or a segment of dislocation line. Clearly. the middle term on the
right in eqn (39) is (iJPliJa)Ba, and thus

where

fu f+x
P = po - _0< -x Aa [3Ka (z, a)K[3(z, a) dz da, (41)

is the a intensity factor induced at z along the crack front, when the front is at x = a,
by f and eT

• The crack necessarily lowers the potential energy from that for the un
cracked body and the energy change is given by the integral term in eqn (41).

Since - uj(r) and - O'",,,(r) are the differential coefficients of BP with respect to
variations Bfi('~fand Be?~,,(~), It follows from (41, 42) that
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Here again, the superscript "0" denotes the field in the uncrackcd body subjected to
the given distribution of f and e1

.

Now, recognizing that the K's depend on f and eT. as in eqn (42), eqn (43) above
for U is seen to be consistent with what was given earlier in eqns (14) and (26). Those
equations followed from the second property enunciated at the outset for weight func
tions, and given as eqn (6). However, the development of this section has made use
only of the first property, eqn (5), and of relations for elastic energy. Hence the de
velopments in this section show that the second property, eqn (6), follows from the
first. As is to be expected, the expression for (1",11 is consistent with multiplying 11,./

with Cmnij (and using Cmnij = Cijm,,); the part Cm"ijel; which has to be subtracted off
is already included in (1::", for the uncracked body, i.e.

(1?,,,, = Cm"ij (UJ.i - eT;). (45)

When the transformation strain corresponds to a dislocation with singular E I. as
in eqn (24), the last term in eqns (37, 39) reduces to fA Ni(1ijo(6.ui) dA so that-Niai,
on A is the energetic force conjugate to dislocation 6. Uj. For dislocations in crystals,
one is most often concerned with the Volterra case 6.u = constant on A, and the
alteration of the' 'transformation" consists of enlarging the dislocated surface A. When
this enlargement is confined to a plane we may describe it by saying that the perimeter
arc L of A is advanced by some distance 0/1 normal to itself, where Oil varies with
position along L. We then may write the last term in eqns (37, 39) as h qon dL where
q is the energetic force on the dislocation and is given formally by

q = N m (1m"6.u,, (46)

(this is the component of the Peach-Koehler force in a direction locally perpendicular
to Land N). As is well known, this formula for q is meaningless as it stands for Volterra
dislocations, as is also the integral over A above, because of the singularity in all,,,
along the dislocation edge. However, the singularity resides entirely in the term a~~,,,

for the uncracked body and if we write am" = a~~n + (1:;,,,, where a:;,n is given by the
integral term in eqn (44), then (1~,n is finite everywhere except along the crack front.
Similarly, we may write the force on a dislocation line as q = qO + q'. The first term.
qO is well defined only in the context of some core "cut-off' procedure (at least such
is required at all points of L having non-zero curvature), whereas q' which represents
the effect of the crack on the energetic force is independent of such procedures and is
given by

(47)

Such ideas as outlined should enable the more rigorous incorporation of three-dimen
sional dislocation effects in the analysis of shear dislocation nucleation from a crack
tip[I I]. They should also provide a fuller understanding of the dislocation-crack tip
interaction, thus far studied two-dimensionally[I2]. These problems can, however, be
addressed in the requisite generality only when all three weight functions ha are em-
~~. -

As a simpler illustration, the stress a yy on)' = 0 is now calculated for an arbitrary
distribution of opening dislocation 6.uy(x, z) on y = 0 ahead of the tip (which is taken
to be at x = a = 0, Le. coincident with the z axis). The stress intensity due to this
opening is given by eqn (34). Only mode I is involved and we denote the intensity
factor as K,(z', a). Then using eqns (3) and (27) for the isotropic material, eqn (44) for
a mn gives
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+ [2vl(l - 2v)]8"/f1hJj.)~, z', a)} K/(z', a) dz' da. (48)

Thus, by eqn (10), the tensile stress on y = 0 is

() fO f +0< aH(x - a, 0, Z - z') , ,
O'yy(x, 0, z) = O'yy (x, 0, z) + K1(z , a) dz da,

-0< -x ay

and by using eqn (30) for aH/a)' and eqn (34) for K I this becomes

O'yy(x, 0, z) = O'~\(x, 0, z)

(49)

for x > 0, where

p = x - a, p = x - a, R2 = (x - a)2 + (z - Z')2, R2 = (x - a)2 + (i - Z')2.

(51)

The integral on z' can be done with the help of eqn (16), resulting in

for the last term in eqn (50) above. The integral on a is reduced to an elementary form
by introducting a new variable

(52)

which runs from oc to 2(xi) 1/2 as a runs from - oc to zero. Thus the integral term is

which is readily evaluated with the substitution / = Dltan cI> where

(53)

Thus the final expression for stress is

O'yy(x, 0, z) = O'~y(x, 0, z)

IJ. f +x IeO< 1 [ D D ]+ - - arctan ----:-;::
2".2(1 - v) -0< 0 D 3 2(xx) 1/2 2(xi) 1/2

x liuy(x, z) di dz. (54)

Note that the integrand remains finite as x, z approach the point x, z at which D = O.
The expression O'~y for the stress which the same opening liUy induces in an infinite

uncracked body can be found by several routes. Perhaps it is simplest to follow Meade
and Keer[7] and their predecessors in observing that such elasticity problems are gov
erned by a three-dimensional harmonic function Y = Y(x, y, z) having the properties
that on the plane y = 0

O'~\(X, 0, z) = - aYlay I,·=(), (55)
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Thus we seek a harmonic function Y which vanishes at infinity and takes on given
values on the plane y = 0. Some elementary analysis shows that the solution can be
obtained by differentiating the spherically symmetric harmonic potential (D1 + y1) - 1/1

on y (Le. forming a double layer) and superposing such that

(56)

and hence

a~y(x, 0, z) ==

(57)

where D is given by eqn (53). By moving one a/ax in eqn (57) inside the integral,
observing that

~ (.!.) /:i u = - ~ (.!.) /:i u. = _ ~ (/:i u,')axD Y axD .' ax D
1 o/:ill,

+---.D ax
(58)

applying the divergence theorem while noting that /:iu" vanishes outside some finite
region, doing the same for one a/az, and then moving the other a/ax and a/az inside the
integral one has

IJ. J+>O (X[ a oJ did.;
(T~y(x,0, z) = 4'lT(l _ v) _ x In (x - x) ai + (t - z) at /:iu,.(x, t) D/" (59)

which is the form given by Weaver[13].
Equations (54) with (57) or (59) gives the stress induced in the cracked solid by

some arbitrary distribution of opening dislocation on y = O. One must add to that
expression the stress field induced in the cracked solid by whatever loadings f act in
order to obtain the total stress. If, as an example, one wishes to analyze the opening
/:illy of a crack on some region A of the half plane y = 0, x > 0, ahead of the main
crack on y = 0, x < 0, then it is necessary that /:iUy be chosen so that the total {T"

vanishes on A. Weaver[13] has outlined a discretization of the integral in eqn (59) which
allows numerical solution for the opening /:iu,. of an isolated crack on A in an infinite
but otherwise uncracked body. By adding to Weaver's discretized matrix the non
singular contributions from the integral in eqn (54) on A it would seem straightforward
to extend his approach to determine numerically the opening /:i u,. of the crack surface
A ahead of the half-plane crack.
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Nole added in proof:

Since preparation of the manuscript the author has learned that Dr. H. F. Bueckner has derived, in the
paper The weight functions of mode I of the penny-shaped and of the elliptic crack (Fracture Mechanics
and Technology, (Edited by Sih and Chow), Vol. 2, pp. 1069-1107, SijthotTand NoordhotT, (1977», results
somewhat analogous to those quoted here from [I] as eqns (7)-(9) for the mode I weight function of the half
plane crack. Bueckner's results are for fields which vary as cos (Az) along the crack front, but by weighting
them with the Fourier transform of a Dirac function of z-z' and then integrating in A it is possible to derive
the mode I weight function of eqns (7)-(9) from them. As learned in a private communication from Dr.
Bueckner, he has independently derived the mode I weight function in this way, in as yet unpublished work,
and has developed a similar derivation for the mode 2 and mode 3 weight functions denoted h2 and h) here
and given only by integral representations in [I]. His results update the discussion at the bottom of the second
page of this paper.


